
Modeling Languages and Abstract Models

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objective
Modeling requirements in systems
Modeling styles

(c) Giovanni De Micheli 3

Electronic systems

 A system is a combination of:
 Hardware platform:

 Processors, memories, transducers
 Software :

 Application and system software
 Attributes:

 Application domain
 Computing, communication, consumer

 Integration level
 Chip, board, distributed/networked

 Function
 Autonomous, embedded

(c) Giovanni De Micheli 4

Trends and challenges

 Design increasingly more complex systems under higher time to market pressure
 Raise level of abstraction

 Design starts are mainly for embedded system applications

 Use and re-use of high-level components

 Processors, controllers, embedded memories

 Support concurrent Hw/Sw development

 System customization via embedded software

 Support automated synthesis and verification

(c) Giovanni De Micheli 5

Embedded systems

MEMORY ISP
SE

N
SO

R
S

AC
TU

AT
O

R
S

HARDWIRED UNIT

Application-specific logic
Timers
A/D and D/A conversion

ENVIROMENT

EMBEDDED
SYSTEM

(c) Giovanni De Micheli 6

Embedded system requirements

Reactive systems:
The system never stops
The system responds to signals produced by the environment

Real-time systems:
Timing constraints on task execution
Hard and soft constraints

(c) Giovanni De Micheli 7

System modeling

 Represent system functions while abstracting away
unnecessary details
 Software programming languages

 Hardware description languages

 Flow and state-based diagrams

 Schematics

 No golden solution
 System heterogeneity

(c) Giovanni De Micheli 8

The limits of my language mean the limits of my world

Wittgenstein

(c) Giovanni De Micheli 9

Circuit Modeling

 Formal methods:
 Models in hardware languages
 Flow and state diagrams
 Schematics

 Informal methods:
 Principles of operations
 Natural-language descriptions

(c) Giovanni De Micheli 10

Hardware versus software models

 Hardware:
 Parallel execution
 I/O ports, building blocks
 Exact event timing is very important

 Software:
 Sequential execution (usually)
 Structural information less important
 Exact event timing is not important

(c) Giovanni De Micheli 11

Hardware Description Languages

 Specialized languages with hardware design support

 Multi-level abstraction:
 Behavior, RTL, structural

 Support for simulation and synthesis
 … but synthesis came in later

(c) Giovanni De Micheli 12

Software programming languages

 Software programming languages (C) can model
functional behavior:
 Example: processor models

 Software language models support marginally design
and synthesis:
 Unless extensions and overloading is used
 Example: SystemC

 Different paradigms for hardware and software
 Strong trend in bridging the gap between software

programming languages and HDLs

(c) Giovanni De Micheli 13

Module 2

Objectives
Language analysys
Procedural languages (Verilog)
Declarative languages (Silage)
Object-oriented languages (SystemC)

(c) Giovanni De Micheli 14

Language analysis

 Syntax:
 External look of a language
 Specified by a grammar

 Semantics:
 Meaning of a language
 Different ways of specifying it

 Pragmatics:
 Other aspects of the language
 Implementation issues

(c) Giovanni De Micheli 15

Language analysis

Procedural languages:
Specify the action by a sequence of steps

Examples: C, Pascal, VHDL, Verilog

Declarative languages:
Specify the problem by a set of declaration
Example: Prolog

(c) Giovanni De Micheli 16

Language analysis

 Imperative Semantics:
 Dependence between the assignments and the values that

variables can take
 Examples C, Pascal

 Applicative semantics:
 Based on function invocation
 Examples: Lisp, Silage

(c) Giovanni De Micheli 17

Hardware languages and views

 Physical view:
 Physical layout languages
 Declarative or procedural

 Structural view:
 Structural languages
 Declarative (with some procedural features)

 Behavioral view:
 Behavioral languages
 Mainly procedural

(c) Giovanni De Micheli 18

Structural view

Composition of blocks

Encoding of a schematic

 Incidence structure

Hierarchy and instantiation

HDL examples:
VHDL, Verilog HDL, …

(c) Giovanni De Micheli 19

Example
(half adder)

HALF_ADDER

a
b carry

sum

y
x

y
x

G2

G1

(c) Giovanni De Micheli 20

Verilog example
structural representation

module HALF_ADDER (a , b , carry , sum);

 input a , b;

 output carry, sum;
 and

 g1 (carry, a , b);

 xor

 g2 (sum, a , b);

endmodule

a

b
carry

sum

y
x

y
x G2

G1

(c) Giovanni De Micheli 21

Behavioral view
procedural languages

 Set of tasks with partial order:
 Architectural-level:

 Tasks: generic operations.
 Logic-level:

 Tasks: logic functions.

 Independent of implementation choices
 HDL examples:

 VHDL, Verilog HDL, ...

(c) Giovanni De Micheli 22

Verilog example
Behavior of combinational logic circuit

module HALF_ADDER(a , b , carry ,sum);

 input a , b;
 output carry, sum;

 assign carry = a & b ;

 assign sum = a ^ b ;

endmodule

(c) Giovanni De Micheli 23

Verilog example
behavior of sequential logic circuit

module DIFFEQ (x, y, u , dx, a, clock, start);
Input [7:0] a, dx;
inout [7:0] x, y, u;
input clock, start;
reg [7:0] xl, ul, yl;
always
begin

wait (start);
 while (x < a)
 begin
 xl = x + dx;
 ul = u - (3 * x * u * dx) - (3 * y * dx);
 yl = y + (u * dx);
 @(posedge clock);
 x = xl; u = ul ; y = yl;
 end
endmodule

(c) Giovanni De Micheli 24

Timing interpretation for design

Operations are synchronized to a clock
By using a wait (or @) command

Wait and @ statements delimit clock boundaries

Clock is a parameter of the model:
Model is updated at each clock cycle

Main languages at structural/behavioral level

Often called register-transfer level (RTL) languages

Verilog (now System Verilog):
C-like, easy to write, harder to read
Motivated by high design productivity

VHDL
Verbose, longer to write, easy to read
Motivated by large system design

(c) Giovanni De Micheli 25

(c) Giovanni De Micheli 26

Behavioral view
declarative languages

 Combinational circuits:
 Set of untimed assignments.
 Each assignment represents a virtual logic gate
 Very similar to procedural models

 Sequential circuits:
 Use timing annotation for delayed signals
 Set of assignments over (delayed) variables

(c) Giovanni De Micheli 27

Silage example

*

+

*

+

+

*

+*

x y

a1 a2

b1 b2

mid

function IIR (a1, a2 , b1, b2, x: num) /* returns */ y : num =
begin
 y = mid + a2 * mid@1 + b2 * mid@2;
 mid = x + a1 * mid@1 + b1 * mid@2;
end

(c) Giovanni De Micheli 28

Hardware primitives

Hardware basic units:
Logic gates
Registers
Black-boxes

 e.g., Complex units, RAMs

Connections

Ports

(c) Giovanni De Micheli 29

Semantics of variables

 Variables are implemented in hardware by:
 Registers
 Wires

 The hardware can store information or not
 Two cases:

 Combinational circuits
 Resolution policy for multiple assignment to a variable

 Sequential circuits
 Variables keep values until reassigned

Main languages at system level

SystemC
Object-oriented C++ hardware library

System Verilog:
Extension of Verilog to system level
Support for system-level verification

OpenCL
Framework for heterogeneous system design
 Interface to parallel computing

(c) Giovanni De Micheli 30

(c) Giovanni De Micheli 31

System Verilog

 Extensions to Verilog HDL
 Includes now the original Verilog language

 Modeling:
 Transaction-level modeling
 Higher abstraction level

 Direct Programming interface
 Enables calls to C/C++/SystemC
 Co-simulation Verilog/SystemC

 Interface modeling with encapsulation
 Support bus-intensive design
 IP protection by nesting modules

 Verification:
 Procedural assertions
 Built into the language
 Avoid recoding errors, increase test accuracy

(c) Giovanni De Micheli 32

SystemC

 Objectives:
 Model Hw with Sw programming language
 Achieve fast simulation
 Provide support for hw/sw system design

 Requirement:
 Give hw semantics to sw models

 Supported by a large consortium of semiconductor and
EDA companies

(c) Giovanni De Micheli 33

SystemC

C++ class library and modeling methodology
Hw semantics defined through the class library

Object-oriented style
Components and encapsulation

No language restriction or addition

Some hw synthesis support

(c) Giovanni De Micheli 34

SystemC features

Enable C++ without extending the language (syntax) - use
classes

Concurrency

Notion of Time

Communication

Reactive Behavior

Hardware Data Types
bit vectors, arbitrary precision
signed and unsigned integers,
fixed-point numbers

Signals, protocols

Clocks

Watching

Processes

(c) Giovanni De Micheli 35

SC_MODULE

SystemC Classes: Modules and Ports

 Modules (sc_module)
 Fundamental structural entity
 Contain processes
 Contain other modules

(creating hierarchy)

in1

clk

in2

out1

out2

• Ports(sc_in<>,sc_out<>,sc_inout<>)
− Modules have ports
− Ports have types
− A process can be made sensitive to ports/signals

(c) Giovanni De Micheli 36

SC_MODULE

in1

clk

in2

out1

out2

SystemC Classes: Processes

 Processes

 Functionality is described
in a process

 Processes run concurrently

 Code inside a process executes sequentially

 SystemC has three different types of processes

 SC_METHOD

 SC_THREAD

 SC_CTHREAD

PROCESS

PROCESS

(c) Giovanni De Micheli 38

Execution of processes

Not hierarchical, communicate through signals
Execution and signal updates

request-update semantics
 1. execute all processes that can be executed
 2. update the signals written by the processes
 3. => other processes to be executed

module ex

port a port binternal
signal

sig

process process

(c) Giovanni De Micheli 39

SystemC Design Vision

SystemC as a single design language

System Specification
(SystemC)

HW
(SystemC)

SW
(SystemC)

Testbench

0101011110100010
1110010100100111
1000011110101001
0001100110101011
. . .

R
ef

in
e

R
ef

in
e

(c) Giovanni De Micheli 40

Module 3

Objectives
Abstract models
The sequencing graph abstraction and its properties

(c) Giovanni De Micheli 41

Abstract models and intermediate formats

Abstract models:
Models based on graphs and discrete mathematics
Useful for problem formalization, algorithm development and

reasoning about properties

 Intermediate forms:
ASCII or binary representations of abstract models
Derived from language models by compilation

(c) Giovanni De Micheli 42

Abstract models
Examples

 Netlists:
 Structural views

 Logic networks:
 Mixed structural/behavioral views

 State diagrams:
 Behavioral views of sequential models

 Dataflow and sequencing graphs:
 Abstraction of behavioral models

(c) Giovanni De Micheli 43

Netlist

HALF_ADDER

a
b carry

sum

y
x

y
x G2

G1

Module-oriented netlist
 G1: a,b,carry
 G2: a,b,sum

(c) Giovanni De Micheli 44

Logic network

Logic network
An interconnection of blocks

 Each block modeled by a Boolean function

Usual restrictions:
 Acyclic and memoryless
 Single-output functions

The model has a structural/behavioral semantics
The structure is induced by the interconnection

Mapped network
Special case when the blocks correspond to library elements

(c) Giovanni De Micheli 45

Example of mapped network

(c) Giovanni De Micheli 46

Example of general network

(c) Giovanni De Micheli 47

Formal finite-state machine model

A set of primary input patterns X

A set of primary output patterns Y

A set of states S

A state transition function: δ: X × S → S

An output function:
 λ: X × S → Y for Mealy models
 λ: S → Y for Moore models

(c) Giovanni De Micheli 48

Example

(c) Giovanni De Micheli 49

Example

(c) Giovanni De Micheli 50

Dataflow graphs

Behavioral views of architectural models

Useful to represent data-paths

Graph:
Vertices = operations
Edges = dependencies

(c) Giovanni De Micheli 51

Example
Differential equation solver -- loop body

diffeq {
read (x, y, u, dx, a) ;
repeat {

xl = x + dx;
ul = u – (3 . x . u . dx) – (3 . y . dx) ;
yl = y + u . dx ;
c = x < a ;
x = xl; u = ul; y = yl ;

until (c);
write (y)
}

(c) Giovanni De Micheli 52

Example

<

* * ** +

* * +

-

-

3 x u dx 3 y u dx x dx

dx y

u

u1

x1

y1 c

a

4

5

3 7 9

1 2 6 8 10

11

(c) Giovanni De Micheli 53

Sequencing graphs

 Behavioral views of architectural models
 Useful to represent data-path and control
 Extended dataflow graphs:

 Operation serialization
 Hierarchy
 Control-flow commands:

 Branching and iteration.

 Polar graphs:
 Source and sink

(c) Giovanni De Micheli 54

Example

<

* * ** +

* * +

-

-
4

5

3 7 9

1 2 6 8 10

11

NOP

0

n

NOP

(c) Giovanni De Micheli 55

Example of hierarchy

NOP

* +

a.0

* CALL

NOP

a.1

a.n

a.2

a.3 a.4

NOP

* +

b.0

b.1 b.2

NOP b.n

(c) Giovanni De Micheli 56

Example of branching

NOP

* +

a.0

* BR

NOP

a.1

a.n

a.2

a.3 a.4

NOP

* +

b.0

b.1 b.2

NOP b.n

NOP

NOP

NOP

c.0

c.1

c.n

(c) Giovanni De Micheli 57

Example of iteration
diffeq {
 read (x; y; u; dx; a);
 repeat {

xl = x + dx;
ul = u – (3 . x . u . dx ;
yl = y + u . dx ;
c = x > a;
x = xl ; u = ul ; y = yl ;
}

 until (c)
write (y) ;
}

(c) Giovanni De Micheli 58

Example of iteration

NOP
a.0

a.1

a.2

NOP

WRITE
a.3

a.n

LOOP

READ

LOOP BODY

(c) Giovanni De Micheli 59

Semantics of sequencing graphs

Marking of vertices:
Waiting for execution
Executing
Having completed execution

Execution semantics:
An operation can be fired as soon as all its immediate

predecessors have completed execution

(c) Giovanni De Micheli 60

Vertex attributes

Area cost

Delay cost:
Propagation delay
Execution delay

Data-dependent execution delays:
Bounded (e.g. branching)
Unbounded (e.g. iteration, synchronization)

(c) Giovanni De Micheli 61

Properties of sequencing graphs

Computed by visiting hierarchy bottom-up

Area estimate:
Sum of the area attributes of all vertices
Worst-case – no sharing

Delay estimate (latency):
Bounded-latency graphs
Length of longest path from source to sink

(c) Giovanni De Micheli 62

Summary

 Hardware synthesis requires specialized language support:
 VHDL and Syestem Verilog are mainly used today

 Similar features
 Simulation-oriented

 Synthesis from programming languages is also possible:
 Hardware and software models of computation are different
 Appropriate hw semantics need to be associated with programming languages

 SystemC

 Abstract models:
 Capture essential information
 Derivable from HDL models
 Useful to prove properties and for algorithm development.

