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Module 1

Objective
Modeling requirements in systems
Modeling styles
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Electronic systems

 A system is a combination of:
 Hardware platform: 

 Processors, memories, transducers  
 Software :

 Application and system software
 Attributes:

 Application domain
 Computing, communication, consumer

 Integration level
 Chip, board, distributed/networked

 Function
 Autonomous, embedded
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Trends and challenges

 Design increasingly more complex systems under higher time to market pressure
 Raise level of abstraction

 Design starts are mainly for embedded system applications

 Use and re-use of high-level components

 Processors, controllers, embedded memories

 Support concurrent Hw/Sw development

 System customization via embedded software

 Support automated synthesis and verification
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Embedded systems
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Embedded system requirements

Reactive systems:
The system never stops
The system responds to signals produced by the environment

Real-time systems:
Timing constraints on task execution
Hard and soft constraints
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System modeling

 Represent system functions while abstracting away 
unnecessary details
 Software programming languages

 Hardware description languages

 Flow and state-based diagrams

 Schematics

 No golden solution
 System heterogeneity
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The limits of my language mean the limits of my world

Wittgenstein
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Circuit Modeling

 Formal methods:
 Models in hardware languages
 Flow and state diagrams
 Schematics

 Informal methods:
 Principles of operations
 Natural-language descriptions
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Hardware versus software models

 Hardware:
 Parallel execution
 I/O ports, building blocks
 Exact event timing is very important

 Software:
 Sequential execution (usually)
 Structural information less important
 Exact event timing is not important
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Hardware Description Languages

 Specialized languages with hardware design support

 Multi-level abstraction:
 Behavior, RTL, structural

 Support for simulation and synthesis
 … but synthesis came in later
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Software programming languages

 Software programming languages (C)  can model 
functional behavior:
 Example: processor models

 Software language models support marginally design 
and synthesis:
 Unless extensions and overloading is used
 Example: SystemC

 Different paradigms for hardware and software
 Strong trend in bridging the gap between software 

programming languages and HDLs
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Module 2

Objectives
Language analysys
Procedural languages (Verilog)
Declarative languages (Silage)
Object-oriented languages (SystemC)
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Language analysis

 Syntax:
 External look of a language
 Specified by a grammar

 Semantics:
 Meaning of a language
 Different ways of specifying it

 Pragmatics:
 Other aspects of the language
 Implementation issues
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Language analysis

Procedural languages:
Specify the action by a sequence of steps

Examples: C, Pascal, VHDL, Verilog

Declarative languages:
Specify the problem by a set of declaration
Example: Prolog
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Language analysis

 Imperative Semantics:
 Dependence between the assignments and the values that 

variables can take
 Examples C, Pascal

 Applicative semantics:
 Based on function invocation
 Examples: Lisp, Silage
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Hardware languages and views

 Physical view:
 Physical layout languages
 Declarative or procedural

 Structural view:
 Structural languages
 Declarative (with some procedural features)

 Behavioral view:
 Behavioral languages
 Mainly procedural
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Structural view

Composition of blocks

Encoding of a schematic

 Incidence structure

Hierarchy and instantiation

HDL examples:
VHDL, Verilog HDL, …
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Example
(half adder)

HALF_ADDER

a
b carry

sum

y
x

y
x

G2

G1
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Verilog example
structural representation

module HALF_ADDER (a , b , carry , sum);

  input      a , b;

  output   carry, sum;
  and

   g1 (carry, a , b);

  xor

   g2 (sum, a , b);

endmodule

a

b
carry

sum

y
x

y
x G2

G1
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Behavioral view
procedural languages

  Set of tasks with partial order:
 Architectural-level:

  Tasks: generic operations.
 Logic-level:

  Tasks: logic functions.

 Independent of implementation choices
 HDL examples:

 VHDL, Verilog HDL, ...



(c)  Giovanni De Micheli 22

Verilog example
Behavior of combinational logic circuit

module    HALF_ADDER(a , b , carry ,sum);   

  input  a , b; 
  output carry, sum;

   assign carry = a & b ;

   assign sum  = a ^ b ;

endmodule
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Verilog example
behavior of sequential logic circuit

module DIFFEQ (x, y, u , dx, a, clock, start);
Input  [7:0] a, dx;
inout [7:0] x, y, u;
input  clock, start;
reg [7:0]  xl, ul, yl;
always
begin

wait ( start);
  while ( x < a )
   begin
   xl = x + dx;
   ul = u - (3 * x * u * dx) - (3 * y * dx);
   yl = y + (u * dx);
   @(posedge clock);
   x = xl; u = ul ; y = yl;
   end
endmodule
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Timing interpretation for design

Operations are synchronized to a clock 
By using a wait (or @) command

Wait and @ statements delimit clock boundaries

Clock is a parameter of the model:
Model is updated at each clock cycle



Main languages at structural/behavioral level

Often called register-transfer level (RTL) languages

Verilog (now System Verilog):
C-like, easy to write, harder to read
Motivated by high design productivity

VHDL
Verbose, longer to write, easy to read
Motivated by large system design

(c)  Giovanni De Micheli 25



(c)  Giovanni De Micheli 26

Behavioral view
declarative languages

 Combinational circuits:
 Set of untimed assignments.
 Each assignment represents a virtual logic gate
 Very similar to procedural models

 Sequential circuits:
 Use timing annotation for delayed signals
 Set of assignments over (delayed) variables
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Silage example

*

+

*

+

+

*

+*

x y

a1 a2

b1 b2

mid

function IIR ( a1, a2 , b1, b2, x: num)  /* returns */   y : num =
begin
  y = mid + a2 * mid@1 + b2 * mid@2;
  mid = x + a1 * mid@1 + b1 * mid@2;
end
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Hardware primitives

Hardware basic units:
Logic gates
Registers
Black-boxes 

 e.g., Complex units, RAMs

Connections

Ports
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Semantics of variables

 Variables are implemented in hardware by:
 Registers
 Wires

 The hardware can store information or not
 Two cases:

 Combinational circuits
 Resolution policy for multiple assignment to a variable

 Sequential circuits
 Variables keep values until reassigned



Main languages at system level

SystemC
Object-oriented C++ hardware library

System Verilog:
Extension of Verilog to system level
Support for system-level verification

OpenCL
Framework for heterogeneous system design
 Interface to parallel computing
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System Verilog

  Extensions to Verilog HDL 
 Includes now the original Verilog language

 Modeling:
 Transaction-level modeling
 Higher abstraction level

 Direct Programming interface
 Enables calls to C/C++/SystemC
 Co-simulation Verilog/SystemC

 Interface modeling with encapsulation
 Support bus-intensive design
 IP protection by nesting modules

 Verification:
 Procedural assertions
 Built into the language
 Avoid recoding errors, increase test accuracy
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SystemC

 Objectives:
 Model Hw with Sw programming language
 Achieve fast simulation
 Provide support for hw/sw system design

 Requirement:
 Give hw semantics to sw models

 Supported by a large consortium of semiconductor and 
EDA companies
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SystemC

C++ class library and modeling methodology
Hw semantics defined through the class library

Object-oriented style
Components and encapsulation

No language restriction or addition

Some hw synthesis support
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SystemC features

Enable C++ without extending the language (syntax)  - use  
classes

Concurrency

Notion of Time

Communication

Reactive Behavior

Hardware Data Types
bit vectors, arbitrary precision 
signed and unsigned integers, 
fixed-point numbers

Signals, protocols

Clocks

Watching

Processes
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SC_MODULE

SystemC Classes:    Modules and Ports

 Modules (sc_module)
 Fundamental structural entity 
 Contain processes
 Contain other modules 

(creating hierarchy)

in1

clk

in2

out1

out2

• Ports(sc_in<>,sc_out<>,sc_inout<>)
− Modules have ports
− Ports have types
− A process can be made sensitive to ports/signals
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SC_MODULE

in1

clk

in2

out1

out2

SystemC Classes: Processes

 Processes

 Functionality is described 
in a process

 Processes run concurrently

 Code inside a process executes sequentially

 SystemC has three different types of processes

 SC_METHOD

 SC_THREAD

 SC_CTHREAD

PROCESS

PROCESS
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Execution of processes

Not hierarchical, communicate through signals
Execution and signal updates

request-update semantics
  1. execute all processes that can be executed
  2. update the signals written by the processes
  3. => other processes to be executed

module ex

port a port binternal
signal

sig

process process
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SystemC Design Vision

SystemC as a single design language

System Specification
(SystemC)

HW
(SystemC)

SW
(SystemC)

Testbench

0101011110100010
1110010100100111
1000011110101001
0001100110101011
. . .

R
ef

in
e

R
ef

in
e
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Module 3

Objectives
Abstract models
The sequencing graph abstraction and its properties
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Abstract models and intermediate formats

Abstract models: 
Models based on graphs and discrete mathematics
Useful for problem formalization, algorithm development and 

reasoning about properties

 Intermediate forms:
ASCII or binary representations of abstract models
Derived from language models by compilation
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Abstract models 
Examples

 Netlists:
 Structural views

 Logic networks:
 Mixed structural/behavioral views

 State diagrams:
 Behavioral views of sequential models

 Dataflow and sequencing graphs:
 Abstraction of behavioral models
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Netlist

HALF_ADDER

a
b carry

sum

y
x

y
x G2

G1

Module-oriented netlist
 G1: a,b,carry
 G2: a,b,sum
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Logic network

Logic network
An interconnection of blocks

 Each block modeled by a Boolean function

Usual restrictions:
 Acyclic and memoryless
 Single-output functions

The model has a structural/behavioral semantics
The structure is induced by the interconnection

Mapped network
Special case when the blocks correspond to library elements
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Example of mapped network
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Example of general network
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Formal finite-state machine model

A set of primary input patterns X

A set of primary output patterns Y

A set of states S

A state transition function: δ: X × S →  S

An output function:
  λ:  X × S → Y for Mealy models
  λ:  S → Y for Moore models
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Example
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Example
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Dataflow graphs

Behavioral views of architectural models

Useful to represent data-paths

Graph:
Vertices = operations
Edges = dependencies
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Example
Differential equation solver -- loop body

diffeq {
read ( x, y, u, dx, a ) ;
repeat {

xl = x + dx;
ul = u – ( 3 . x . u . dx ) – ( 3 . y . dx ) ;
yl = y + u . dx ;
c = x < a ;
x = xl; u = ul; y = yl ;

until ( c );
write ( y )
}
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Example

<

* * ** +

* * +

-

-

3 x u dx 3 y u dx x dx

dx y

u

u1

x1

y1 c

a

4
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3 7 9

1 2 6 8 10

11
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Sequencing graphs

  Behavioral views of architectural models
  Useful to represent data-path and control
  Extended dataflow graphs:

 Operation serialization
 Hierarchy
 Control-flow commands:

  Branching and iteration.

 Polar graphs: 
 Source and sink
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Example

<

* * ** +

* * +

-
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Example of hierarchy

NOP

* +

a.0

* CALL

NOP

a.1

a.n

a.2

a.3 a.4

NOP

* +

b.0

b.1 b.2

NOP b.n
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Example of branching

NOP

* +

a.0

* BR

NOP

a.1

a.n

a.2

a.3 a.4

NOP

* +

b.0

b.1 b.2

NOP b.n

NOP

NOP

NOP

c.0

c.1

c.n
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Example of iteration
diffeq {
    read (x; y; u; dx; a);
    repeat {

xl = x + dx;
ul = u – (3 . x . u . dx ;
yl = y + u . dx ;
c = x > a;
x = xl ; u = ul ; y = yl ;
}

    until ( c )
write (y) ;
}
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Example of iteration

NOP
a.0

a.1

a.2

NOP

WRITE
a.3

a.n

LOOP

READ

LOOP BODY
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Semantics of sequencing graphs

Marking of vertices:
Waiting for execution
Executing
Having completed execution

Execution semantics:
An operation can be fired as soon as all its immediate 

predecessors have completed execution
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Vertex attributes

Area cost

Delay cost:
Propagation delay
Execution delay

Data-dependent execution delays:
Bounded (e.g. branching)
Unbounded (e.g. iteration, synchronization)
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Properties of sequencing graphs

Computed by visiting hierarchy bottom-up

Area estimate:
Sum of the area attributes of all vertices
Worst-case – no sharing

Delay estimate (latency):
Bounded-latency graphs
Length of longest path from source to sink
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Summary

 Hardware synthesis requires specialized language support:
 VHDL and Syestem Verilog are mainly used today

 Similar features 
 Simulation-oriented

 Synthesis from programming languages is also possible:
 Hardware and software models of computation are different
 Appropriate hw semantics need to be associated with programming languages

 SystemC

 Abstract models:
 Capture essential information
 Derivable from HDL models
 Useful to prove properties and for algorithm development.


