Modeling Languages and Abstract Models

Giovanni De Micheli
Integrated Systems Laboratory

m
T
"1
=

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objective
A Modeling requirements in systems

A Modeling styles

(c) Giovanni De Micheli

Electronic systems

¢ A system is a combination of:
A Hardware platform:
v Processors, memories, transducers

A Software :
v Application and system software

¢ Attributes:

A Application domain
v Computing, communication, consumer

A Integration level
v Chip, board, distributed/networked

A Function
v Autonomous, embedded

(c) Giovanni De Micheli

Trends and challenges

¢ Design increasingly more complex systems under higher time to market pressure
A Raise level of abstraction

¢ Design starts are mainly for embedded system applications

¢ Use and re-use of high-level components
A Processors, controllers, embedded memories

¢ Support concurrent Hw/Sw development
A System customization via embedded software

¢ Support automated synthesis and verification

(c) Giovanni De Micheli 4

Embedded systems

MEMORY

(0))]
& o
@) @)
) =
=z <
= =
0 O

<

HARDWIRED UNIT

Application-specific logic
Timers
A/D and D/A conversion

(c) Giovanni De Micheli 5

Embedded system requirements

¢ Reactive systems:

A The system never stops

A The system responds to signals produced by the environment

¢ Real-time systems:

A Timing constraints on task execution

A Hard and soft constraints

(c) Giovanni De Micheli

System modeling

¢ Represent system functions while abstracting away
unnecessary details

A Software programming languages
A Hardware description languages
A Flow and state-based diagrams

A Schematics

¢ No golden solution

A System heterogeneity

(c) Giovanni De Micheli

The limits of my language mean the limits of my world

Wittgenstein

(c) Giovanni De Micheli

Circuit Modeling

¢ Formal methods:

A Models in hardware languages
A Flow and state diagrams
A Schematics

¢ Informal methods:

A Principles of operations
A Natural-language descriptions

(c) Giovanni De Micheli

Hardware versus software models

¢ Hardware:

A Parallel execution
A /O ports, building blocks
A Exact event timing is very important

¢ Software:

A Sequential execution (usually)
A Structural information less important
A Exact event timing is not important

(c) Giovanni De Micheli

10

Hardware Description Languages

¢ Specialized languages with hardware design support

¢ Multi-level abstraction:

A Behavior, RTL, structural

¢ Support for simulation and synthesis

A ... but synthesis came in later

(c) Giovanni De Micheli

11

Software programming languages

¢ Software programming languages (C) can model
functional behavior:

A Example: processor models

¢ Software language models support marginally design
and synthesis:

A Unless extensions and overloading is used
A Example: SystemC

¢ Different paradigms for hardware and software

¢ Strong trend in bridging the gap between software
programming languages and HDLs

(c) Giovanni De Micheli

12

Module 2

¢ Objectives
A Language analysys
A Procedural languages (Verilog)
ADeclarative languages (Silage)

A Object-oriented languages (SystemC)

(c) Giovanni De Micheli

13

Language analysis

¢ Syntax:
A External look of a language
A Specified by a grammar

¢ Semantics:

A Meaning of a language

A Different ways of specifying it
¢ Pragmatics:

A Other aspects of the language
A Implementation issues

(c) Giovanni De Micheli

14

Language analysis

¢ Procedural languages:
A Specify the action by a sequence of steps

A Examples: C, Pascal, VHDL, Verilog
¢ Declarative languages:

A Specify the problem by a set of declaration

A Example: Prolog

(c) Giovanni De Micheli

15

Language analysis

¢ Imperative Semantics:

A Dependence between the assignments and the values that
variables can take

A Examples C, Pascal

¢ Applicative semantics:

A Based on function invocation
A Examples: Lisp, Silage

(c) Giovanni De Micheli

16

Hardware languages and views

¢ Physical view:
A Physical layout languages
A Declarative or procedural

¢ Structural view:

A Structural languages

A Declarative (with some procedural features)
¢ Behavioral view:

A Behavioral languages
A Mainly procedural

(c) Giovanni De Micheli

17

Structural view

¢ Composition of blocks

¢ Encoding of a schematic
¢ Incidence structure

¢ Hierarchy and instantiation

¢ HDL examples:
AVHDL, Verilog HDL, ...

(c) Giovanni De Micheli

18

Example
(half adder)

HALF_ADDER

(=

(c) Giovanni De Micheli

carry

sum

19

Verilog example
Structural representation

module HALF_ADDER (a, b, carry, sum);

input a,b;
output carry, sum; a | N carry
ry . x G1)
and
g1 (Ca”'y, d, b)’ sum
))x G2
Xor
g2 (sum, a, b);
endmodule

(c) Giovanni De Micheli

Behavioral view
procedural languages

o Set of tasks with partial order:
A Architectural-level:
V Tasks: generic operations.
A Logic-level:
V¥ Tasks: logic functions.

¢ Independent of implementation choices

¢ HDL examples:
A VHDL, Verilog HDL, ...

(c) Giovanni De Micheli

21

Verilog example

Behavior of combinational logic circuit

module HALF_ADDER(a, b, carry ,sum);

input a,b;
output carry, sum,
assigncarry=a&b;

assignsum =a’*b;

endmodule

(c) Giovanni De Micheli

22

Verilog example
behavior of sequential logic circuit

module DIFFEQ (x, y, u, dx, a, clock, start);

Input [7:0] a, dx;
inout [7:0] XY, u;
input clock, start;
reg [7:0] xl, ul,yl
always
begin
wait (start);
while (x<a)
begin
Xl =x+dx;
ul=u-(3*x*u*dx)-(3*y*dx);
yl=y + (u*dx);
@(posedge clock);
x=xl;u=ul;y=yl;
end
endmodule

(c) Giovanni De Micheli

23

Timing interpretation for design

¢ Operations are synchronized to a clock

A By using a wait (or @) command

¢ Wait and @ statements delimit clock boundaries

¢ Clock is a parameter of the model:

A Model is updated at each clock cycle

(c) Giovanni De Micheli

24

Main languages at structural/behavioral level

¢ Often called register-transfer level (RTL) languages

¢ Verilog (now System Verilog):

AC-like, easy to write, harder to read

A Motivated by high design productivity
¢ VHDL

AVerbose, longer to write, easy to read

A Motivated by large system design

(c) Giovanni De Micheli

25

Behavioral view

declarative languages

¢ Combinational circuits:

A Set of untimed assignments.
A Each assignment represents a virtual logic gate

A Very similar to procedural models

¢ Sequential circuits:

A Use timing annotation for delayed signals

A Set of assignments over (delayed) variables

(c) Giovanni De Micheli

26

Silage example

b2
function IR (a1, a2, b1, b2, x: num) /*returns */ vy : num =
begin
=mid + a2 * mid@1 + b2 * mid@?2;
mid =x +al*mid@1 + b1 * mid@2;
end

(c) Giovanni De Micheli 27

Hardware primitives

¢ Hardware basic units:
ALogic gates
ARegisters

A Black-boxes
v e.g., Complex units, RAMs

¢ Connections

¢ Ports

(c) Giovanni De Micheli

28

Semantics of variables

¢ Variables are implemented in hardware by:

A Registers
A Wires

¢ The hardware can store information or not

¢ Two cases:

A Combinational circuits
v Resolution policy for multiple assignment to a variable

A Sequential circuits
v Variables keep values until reassigned

(c) Giovanni De Micheli

29

Main languages at system level

¢ SystemC

A Object-oriented C++ hardware library

+ System Verilog:

A Extension of Verilog to system level

A Support for system-level verification

¢ OpenCL

A Framework for heterogeneous system design

Alnterface to parallel computing

(c) Giovanni De Micheli

30

System Verilog

¢ Extensions to Verilog HDL
A Includes now the original Verilog language

¢ Modeling:
A Transaction-level modeling
v Higher abstraction level

A Direct Programming interface
v Enables calls to C/C++/SystemC
v Co-simulation Verilog/SystemC

A Interface modeling with encapsulation
v Support bus-intensive design
v IP protection by nesting modules
¢ Verification:

A Procedural assertions
v Built into the language
v Avoid recoding errors, increase test accuracy

(c) Giovanni De Micheli

31

SystemC

¢ Objectives:

A Model Hw with Sw programming language
A Achieve fast simulation

A Provide support for hw/sw system design

¢ Requirement:

A Give hw semantics to sw models

¢ Supported by a large consortium of semiconductor and
EDA companies

(c) Giovanni De Micheli

32

SystemC

¢ C++ class library and modeling methodology

A Hw semantics defined through the class library

¢ Object-oriented style

A Components and encapsulation

No language restriction or addition

¢ Some hw synthesis support

(c) Giovanni De Micheli

33

SystemC features

¢ Enable C++ without extending the language (syntax) - use
classes

bit vectors, arbitrary precision
Hardware Data Types - signed and unsigned integers,

fixed-point numbers

Notion of Time - Clocks

Reactive Behavior - Watching

(c) Giovanni De Micheli 34

SystemC Classes: Modules and Ports

SC_MODULE
¢ Modules (sc_module) N B o
A Fundamental structural entity
A Contain processes D
A Contain other modules n2jll) B o2
(creating hierarchy)

* Ports(sc in<>,sc out<>,sc inout<>)
— Modules have ports
— Ports have types
— A process can be made sensitive to ports/signals

(c) Giovanni De Micheli 35

SystemC Classes: Processes

¢ Processes SC_MODULE

A Functionality is described 1 . B o

in a process ok [

A Processes run concurrently n2 [. B o2

A Code inside a process executes sequentially

A SystemC has three different types of processes
v SC_METHOD
v SC_THREAD
v SC_CTHREAD

(c) Giovanni De Micheli 36

Execution of processes

rocess rocess
porta P internal P port b

signal
sig

module ex

¢ Not hierarchical, communicate through signals
+ Execution and signal updates

Arequest-update semantics
A 1. execute all processes that can be executed
A 2. update the signals written by the processes

A 3.=>other processes to be executed

(c) Giovanni De Micheli 38

SystemC Design Vision

System Specification
(SystemC)

SW
SystemC)

youaqisa|

+ SystemC as a single design language

(c) Giovanni De Micheli

39

Module 3

¢ Objectives

A Abstract models

A The sequencing graph abstraction and its properties

(c) Giovanni De Micheli

40

Abstract models and intermediate formats

¢ Abstract models:
A Models based on graphs and discrete mathematics

A Useful for problem formalization, algorithm development and
reasoning about properties

¢ Intermediate forms:
A ASCII or binary representations of abstract models

ADerived from language models by compilation

(c) Giovanni De Micheli 41

Abstract models
Exameles

¢ Netlists:
A Structural views

¢ Logic networks:
A Mixed structural/behavioral views

¢ State diagrams:
A Behavioral views of sequential models

¢ Dataflow and sequencing graphs:
A Abstraction of behavioral models

(c) Giovanni De Micheli 42

Netlist

®Module-oriented netlist

A G1: a,b,carry
A G2: a,b,sum HALF ADDER
- —* &1)
o y J carry
L) y 62 sum

(c) Giovanni De Micheli 43

Logic network

¢ Logic network

A An interconnection of blocks
v Each block modeled by a Boolean function

A Usual restrictions:
v Acyclic and memoryless
v Single-output functions

¢ The model has a structural/behavioral semantics

A The structure is induced by the interconnection

¢ Mapped network

A Special case when the blocks correspond to library elements

(c) Giovanni De Micheli

44

(c) Giovanni De Micheli

Example of mapped network

45

Example of general network

...

4 P =ce+de r=p+a Ss=r+b’ X

g=a+b u=qc+qc +qc z

(c) Giovanni De Micheli 46

Formal finite-state machine model

¢ A set of primary input patterns X

¢ A set of primary output patterns Y

¢ A set of states S

A state transition function: : X X S — S

¢ An output function:
A A: X X §— Y for Mealy models

A AN: S — Y for Moore models

(c) Giovanni De Micheli

47

Example

INPUT | STATE | N-STATE | OUTPUT
0 S1 $3 1
1 $1 S5 1
0 $2 $3 1
1 $2 S5 1
0 53 59 0
1 53 51 1
0 Sa sS4 0
1 S4 S5 1
0 S5 S4 1
1 S5 $1 O

(c) Giovanni De Micheli

48

(c) Giovanni De Micheli

Example

49

Dataflow graphs

¢ Behavioral views of architectural models
+ Useful to represent data-paths

¢ Graph:

A\Vertices = operations

A Edges = dependencies

(c) Giovanni De Micheli

50

Example

Differential equation solver -- loop body

diffeq {

read (x, y, u, dx, a) ;

repeat {
xl=x+dx;
ul=u-(3 x-u-dx)-(3-y-dx);
yl=y+u dx;
c=x<a;
x=xl;u=ul;y=yl;

until (¢);

write (y)

}

(c) Giovanni De Micheli 51

(c) Giovanni De Micheli

Example

O

52

Sequencing graphs

¢ Behavioral views of architectural models
¢ Useful to represent data-path and control

¢ Extended dataflow graphs:

A Operation serialization
A Hierarchy

A Control-flow commands:
v Branching and iteration.

¢ Polar graphs:

A Source and sink

(c) Giovanni De Micheli

53

54

(c) Giovanni De Micheli

Example of hierarchy

—

/NoP } 2.0

/ /N
/7 S—=—7 N

a.3

(c) Giovanni De Micheli

55

Example of branching

///—\\\
INOP } 80
/
AN
7/ ~— N
//
~a.1
a.3
AN
\\
N/
{/‘
a r]\\NOF’ !

(c) Giovanni De Micheli

Example of iteration

diffeq {
read (x; y; u; dx; a);
repeat {
Xl =X+ dx;
ul=u-(3-x-u-dx;
yl=y+u-dx;
C=X>a;
x=xl;u=ul;y=yl;
}
until (¢)
write (y) ;
}

(c) Giovanni De Micheli

57

(c) Giovanni De Micheli

Example of iteration

—

7/ N

/ N a.o
NOP)

\\ ///

a.1

LOOP BODY

58

Semantics of sequencing graphs

Marking of vertices:

A Waiting for execution
A Executing

A Having completed execution

¢ Execution semantics:

A An operation can be fired as soon as all its immediate
predecessors have completed execution

(c) Giovanni De Micheli

59

Vertex attributes

¢ Area cost

¢ Delay cost:

A Propagation delay

A Execution delay

¢ Data-dependent execution delays:
A Bounded (e.g. branching)

AUnbounded (e.g. iteration, synchronization)

(c) Giovanni De Micheli

60

Properties of sequencing graphs

¢ Computed by visiting hierarchy bottom-up

¢ Area estimate:

A Sum of the area attributes of all vertices

AWorst-case - no sharing

¢ Delay estimate (latency):

A Bounded-latency graphs

A Length of longest path from source to sink

(c) Giovanni De Micheli

61

Summary

¢ Hardware synthesis requires specialized language support:

A VHDL and Syestem Verilog are mainly used today

v Similar features
v Simulation-oriented

¢ Synthesis from programming languages is also possible:
A Hardware and software models of computation are different

A Appropriate hw semantics need to be associated with programming languages
v SystemC

¢ Abstract models:
A Capture essential information
A Derivable from HDL models

A Useful to prove properties and for algorithm development.

(c) Giovanni De Micheli 62

